Brief about Civil Engg Department:

Civil Engineering Department is the oldest department in this institute right from the establishment of Government College of Engineering in Nagpur 1956. The department offers the undergraduate course of B.Tech in Civil Engineering and Four Postgraduate Courses of M.Tech as given below.

<table>
<thead>
<tr>
<th>Program</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UG in Civil Engineering</td>
<td>Started with 60 seats in 1956</td>
</tr>
<tr>
<td></td>
<td>Intake increased to 71 in 2008</td>
</tr>
<tr>
<td></td>
<td>Intake increase to 82 in 2009</td>
</tr>
<tr>
<td></td>
<td>Intake increase to 92 in 2010</td>
</tr>
<tr>
<td>PG in Civil Engineering Department</td>
<td>Started in 1966 (32 seats)</td>
</tr>
<tr>
<td>1. Environmental Engineering</td>
<td>Started in 2005 (20 seats)</td>
</tr>
<tr>
<td>2. Water Resources Engineering</td>
<td>Started in 2010 (20 seats)</td>
</tr>
<tr>
<td>3. Construction Technology and Management</td>
<td>Started in 2012 (20 seats)</td>
</tr>
<tr>
<td>4. Transportation Engineering</td>
<td></td>
</tr>
</tbody>
</table>

VISION:

To contribute effectively to the National Endeavour of producing quality human resource of world class standard in Civil Engineering by developing a sustainable technical education system to meet the changing technological needs of the Country incorporating relevant of social concerns and to build an environment to create and propagate innovative technologies for the economic development of Nation.

MISSION:

The Mission of the undergraduate Civil Engineering program is to develop students into capable civil engineering graduates by imparting appropriate high quality education in Civil Engineering so that they could be readily adapted by the service sector to meet the challenges faced by the Nation. The program strives for excellence in engineering education and profession. It also aims to promote all round development of the personality of students by suitably involving them in Co-curricular and extra-curricular activities.

<table>
<thead>
<tr>
<th>TABLE 1. CREDIT REQUIREMENTS FOR POST GRADUATE STUDIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Postgraduate Core (PC)</td>
</tr>
<tr>
<td>Category</td>
</tr>
<tr>
<td>Departmental Core (DC)</td>
</tr>
<tr>
<td>Basic Science (BS)</td>
</tr>
<tr>
<td>Grand Total PC + PE</td>
</tr>
</tbody>
</table>

The number of credits attached to a subject depends on number of classes in a week. For example a subject with 3-1-0 (L-T-P) means it has 3 Lectures, 1 Tutorial and 0 Practical in a week. This subject will have eight credits (3x2 + 1x1 + 0x1 = 8). If a student is declared pass in a subject, then he/she gets the credits associated with that subject. Depending on marks scored in a subject, student is given a Grade. Each grade has got certain grade points as follows:
<table>
<thead>
<tr>
<th>Grades</th>
<th>AA</th>
<th>AB</th>
<th>BB</th>
<th>BC</th>
<th>CC</th>
<th>CD</th>
<th>DD</th>
<th>FF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade Points</td>
<td>10</td>
<td>09</td>
<td>08</td>
<td>07</td>
<td>06</td>
<td>05</td>
<td>04</td>
<td>Fail</td>
</tr>
</tbody>
</table>

The performance of a student will be evaluated in terms of two indices, viz. the Semester Grade Point Average (SGPA) which is the Grade Point Average for a semester and Cumulative Grade Point Average (CGPA) which is the Grade Point Average for all the completed semesters at any point in time. SGPA and CGPA are:

\[
SGPA = \frac{\sum_{\text{Semester}} (\text{Course credits} \times \text{Grade points}) \text{ for all courses except audit}}{\sum_{\text{Semester}} \text{(Course credits)} \text{ for all courses except audit}}
\]

\[
CGPA = \frac{\sum_{\text{Allsemester}} (\text{Course credits} \times \text{Grade points}) \text{ for all courses with pass grade except audit}}{\sum_{\text{Allsemester}} \text{(Course credits)} \text{ for all courses except audit}}
\]

Students can Audit a few subjects. i.e., they can attend the classes and do home work and give exam also, but they will not get any credit for that subject. Audit subjects are for self enhancement of students.
<table>
<thead>
<tr>
<th>Name of Faculty Members</th>
<th>Designation</th>
<th>Qualifications</th>
<th>Areas of specialization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mhaisalkar V.A.</td>
<td>Professor</td>
<td>B.E, M.Tech, Ph.D</td>
<td>Environmental Engg</td>
</tr>
<tr>
<td>Gupta R.</td>
<td>Professor</td>
<td>B.E, M.Tech, Ph.D</td>
<td>Environmental Engg</td>
</tr>
<tr>
<td>Katpatal Y.B.</td>
<td>Professor</td>
<td>B.Sc, M.Tech, MBA, Ph.D</td>
<td>Remote Sensing and GIS</td>
</tr>
<tr>
<td>Tembhurkar A.R.</td>
<td>Professor</td>
<td>B.E, M.Tech, Ph.D</td>
<td>Environmental Engg</td>
</tr>
<tr>
<td>Ghare A.D.</td>
<td>Professor</td>
<td>B.E, M.Tech, Ph.D</td>
<td>Hydraulic Engg</td>
</tr>
<tr>
<td>Latkar M.V.</td>
<td>Associate Professor</td>
<td>B.Sc., M.Sc, Ph.D</td>
<td>Environmental Biochemistry</td>
</tr>
<tr>
<td>Lataye D.H.</td>
<td>Associate Professor</td>
<td>B.E, M.Tech, Ph.D</td>
<td>Environmental Engg</td>
</tr>
<tr>
<td>Ralegaonkar R.V.</td>
<td>Associate Professor</td>
<td>B.E, M.E, Ph.D</td>
<td>Energy Efficient Building, Disaster Management, Construction Technology & Mgt.</td>
</tr>
<tr>
<td>Landge V.S.</td>
<td>Associate Professor</td>
<td>B.E., M.E, Ph.D</td>
<td>Traffic Engineering</td>
</tr>
<tr>
<td>Mandal A.</td>
<td>Associate Professor</td>
<td>B.E., M.E, Ph.D</td>
<td>Soil Mechanics and Foundation Engg</td>
</tr>
<tr>
<td>Vasudeo A.D.</td>
<td>Assistant Professor</td>
<td>B.E, M.Tech, Ph.D</td>
<td>Water Resources Engg</td>
</tr>
<tr>
<td>Patel A.</td>
<td>Assistant Professor</td>
<td>B.E, M.Tech, Ph.D</td>
<td>Soil Mechanics and Foundation Engg</td>
</tr>
<tr>
<td>Dongre S.R.</td>
<td>Assistant Professor</td>
<td>B.E., M.Tech, Ph.D</td>
<td>Environmental Engg</td>
</tr>
<tr>
<td>Wanjari. S. P.</td>
<td>Assistant Professor</td>
<td>B.E., M.Tech, Ph.D</td>
<td>Construction Technology and Management, Concrete Technology</td>
</tr>
<tr>
<td>Mirajkar A.B.</td>
<td>Assistant Professor</td>
<td>B.E, M.E, Ph.D</td>
<td>Water Resources Engg</td>
</tr>
<tr>
<td>Madurwar M.</td>
<td>Assistant Professor</td>
<td>B.E, M.E, Ph.D</td>
<td>Building Materials</td>
</tr>
<tr>
<td>Adhikary S.</td>
<td>Assistant Professor</td>
<td>B.E, M.Tech, Ph.D</td>
<td>Soil Dynamics</td>
</tr>
</tbody>
</table>
Program Outcomes (PO)

The program outcomes are as follows. Parameters on which the PO's of the program are based are given as below and aim of PO's is to enable students to:

1. Work in Civil Engineering sector which is involved with various aspects of planning, design, construction and operation of structures and systems.
2. Design and analyze the complex problems and provide state of the art solutions.
3. Contribute to the academic and research in the broad field of civil engineering.
4. Develop knowledge and skills in the area of broad domain of civil engineering including construction technology, water resources, environmental engineering, geotechnical engineering, geospatial technology and transportation engineering.

Program outcomes adopted for correlation to course outcomes.

Graduates Attributes (GA’s) form a set of individually assessable outcomes that are the components indicative of the graduate's potential to acquire competence to practice at the appropriate level. The GA's are indicators of the attributes expected of a graduate from an accredited program. The Graduates of this program must acquire:

a. An ability to apply knowledge of mathematics, science, and engineering to solve Civil engineering problems
b. An ability to identify, formulate, design and conduct experiments, as well as to analyze and interpret data
c. An ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, safety, and sustainability
d. An ability to understand engineering and management functions and to be able to function on multidisciplinary teams
e. An ability to identify, formulate, and solve civil engineering problems
f. An understanding of professional and ethical responsibility to extend the social benefit of the civil engineering project
g. An ability to communicate effectively to handle complex engineering activities with the engineering community and the society at large, and should posses the skill of technical writing and effective presentation.
h. The broad education necessary to understand the impact of engineering solutions in a global, economic, and societal context
i. A recognition of the need for, and an ability to engage in independent life-long learning to incorporate technological innovations
j. A knowledge of contemporary issues and environment,
k. An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.
<table>
<thead>
<tr>
<th>Program Core(PC)</th>
<th>Program Elective (PE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>Credit</td>
</tr>
<tr>
<td>Departmental Core(DC)</td>
<td>37</td>
</tr>
<tr>
<td>Grand total PC+PE</td>
<td>52</td>
</tr>
</tbody>
</table>

I Semester

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>L-T-P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEL406</td>
<td>Advanced Concrete Technology</td>
<td>3-0-0</td>
<td>3</td>
</tr>
<tr>
<td>CEP 406</td>
<td>Advanced Concrete Technology*</td>
<td>0-0-2</td>
<td>1</td>
</tr>
<tr>
<td>CEL409</td>
<td>Quality and Safety in Construction</td>
<td>3-0-0</td>
<td>3</td>
</tr>
<tr>
<td>CEL519</td>
<td>Construction Planning and Control</td>
<td>3-0-0</td>
<td>3</td>
</tr>
<tr>
<td>CEL52</td>
<td>Construction Contracts and Specifications</td>
<td>3-0-0</td>
<td>3</td>
</tr>
<tr>
<td>CEL58</td>
<td>Building Services</td>
<td>3-0-0</td>
<td>3</td>
</tr>
</tbody>
</table>

Core Credits = 16

II Semester

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>L-T-P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEL53</td>
<td>Construction Equipment and Methods</td>
<td>3-0-0</td>
<td>3</td>
</tr>
<tr>
<td>CEL54</td>
<td>Project Appraisal and Construction Finance</td>
<td>3-1-0</td>
<td>4</td>
</tr>
</tbody>
</table>

ELECTIVE (Any One)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>L-T-P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEL559</td>
<td>Energy Efficient Building</td>
<td>3-0-0</td>
<td>3</td>
</tr>
<tr>
<td>CEL413</td>
<td>Pre-stressed Concrete Structures</td>
<td>3-1-0</td>
<td>4</td>
</tr>
<tr>
<td>CEL442</td>
<td>Geotechnical Investigation for Construction Projects</td>
<td>3-0-0</td>
<td>3</td>
</tr>
<tr>
<td>CEL561</td>
<td>Risk Analysis and Decision Making</td>
<td>3-0-0</td>
<td>3</td>
</tr>
<tr>
<td>CEL562</td>
<td>Sustainable Construction Engineering</td>
<td>3-0-0</td>
<td>3</td>
</tr>
<tr>
<td>MAL409</td>
<td>Application of Operation Research Techniques in Construction</td>
<td>3-0-0</td>
<td>3</td>
</tr>
<tr>
<td>CEL563</td>
<td>Infrastructure Planning</td>
<td>3-0-0</td>
<td>3</td>
</tr>
<tr>
<td>CEL510</td>
<td>Environmental Management</td>
<td>3-0-0</td>
<td>3</td>
</tr>
<tr>
<td>CEL542</td>
<td>Introduction to Climate Change</td>
<td>3-0-0</td>
<td>3</td>
</tr>
</tbody>
</table>

ELECTIVE (Any Three)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>L-T-P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEL557</td>
<td>Maintenance and Rehabilitation of Structures</td>
<td>3-0-0</td>
<td>3</td>
</tr>
<tr>
<td>CEL563</td>
<td>Infrastructure Planning</td>
<td>3-0-0</td>
<td>3</td>
</tr>
</tbody>
</table>

5 DC + 1 DE = 19/20 Credits

III Semester

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>L-T-P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>CED501</td>
<td>Project Phase-I</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>CEP564</td>
<td>Soft Computing in Construction Management</td>
<td>0-0-4</td>
<td>2</td>
</tr>
</tbody>
</table>

ELECTIVE (Any One)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>L-T-P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEL560</td>
<td>Precast And Composite Structures</td>
<td>3-0-0</td>
<td>3</td>
</tr>
<tr>
<td>CEL582</td>
<td>Advanced Construction Technology</td>
<td>3-0-0</td>
<td>3</td>
</tr>
<tr>
<td>CEL 557</td>
<td>Maintenance and Rehabilitation of Structures</td>
<td>3-0-0</td>
<td>3</td>
</tr>
<tr>
<td>CEL418</td>
<td>Energy Conversion and Environments</td>
<td>3-0-0</td>
<td>3</td>
</tr>
</tbody>
</table>

1 DC + 1 DE = 8 Credits

IV Semester

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>L-T-P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>CED502</td>
<td>Project Phase-II</td>
<td>-</td>
<td>9</td>
</tr>
</tbody>
</table>

1 DC = 9 Credits

* Student must register both for practical and Theory of a course
Course Outcomes:
1. Preparing a Concrete Mix Design with using environmental friendly materials such as Fly ash, Silica Fumes, Metakaolin & GGBS.
2. Carrying out Non Destruction Testing of Concrete using Core Test, UPV and Rebound Hammer.

Syllabus:
Review of properties of cement, their physical and chemical properties, special purpose cements, Classification and properties of aggregates, soundness of aggregates, alkali aggregate reaction, thermal properties of aggregates, Importance of shape and Surface area and grading, gap graded and aggregates. Admixtures & construction chemicals, Use of Fly Ash, Silica Fumes, Metakaolin & GGBS in concrete.

Permeability and Durability of concrete, Parameters of durability of concrete, chemical attack on concrete, Production of concrete; batching mixing, transportation, placing, compaction of concrete. Special methods of concreting and curing of concrete, Hot weather and cold weather concreting, Guniting (Shotcreting).

Concrete mix design, Basic considerations and choice a mix proportions, various methods of mix designs including IS Code method. Quality control and quality assurance of concrete, Acceptance criteria, Quality management in concrete construction, Inspection and testing of concrete. Non-destructive testing of concrete, core test and load test.

REFERENCE:
Course Outcomes:
1. To introduce the students about quality and safety related challenges in construction industry
2. To make students aware about the globally recognized guidelines/theories for quality and safety in construction
3. To make students self efficient to audit quality and safety related challenges in construction

Syllabus:
Total quality management concepts; ISO9000; QA/QC systems and organizations, Quality Audits; Problem solving techniques; Statistical Quality Control; Quality Function Deployment; Material Quality Assurance; Specifications and Tolerances.

Safety issues; Injury accidents and their causes; Safety program components; Role of workers, Supervisors, Managers and Owners; Safety Procedures for various construction operations; Safety audits; Safety laws.

Safety Organization and Management: Safety policies, safety organization, safety committees, safety representatives, outside agencies – Govt. intervention, international agreements.

REFERENCE:
Course Outcomes:

1. To bring the civil engineers to such a level so as to enable them, to take the appropriate decision in respect of choice of Prestressed section over R.C.C.
2. To make the learners to be aware of such a highly mechanized technology in civil engineering construction.
3. To imbibe the culture of entrepreneurship in precast prestressed industry in mass housing, railway sleepers, electric transmission poles etc.
4. To understand the basic design considerations in prestressed concrete structures in relation to its applications.
5. To employ & develop new techniques in rehabilitation of distressed structures like buildings, Bridges & infrastructures.

Syllabus:

Transfer of prestress by bond, Transverse tensile stresses, End zone reinforcement. Behaviour of Bonded and unbounded prestress concrete beams.

Shear resistance of prestressed concrete members: Principal stresses and ultimate shear Resistance, Design of shear reinforcement, prestressed concrete, members in Torsion, Design of reinforcement in torsion shear and bending.

REFERENCE:
Course Outcomes:
This course provides a broad conceptual and analytical understanding of the engineering aspects of energy generation, storage and conversion with an emphasis on sustainable energy use

Syllabus:

REFERENCE:
Course Outcomes:
To make Civil Engineering students able to prepare business plan by analyzing the economic and market situations.

Syllabus:
Principles of management and Personnel management: Economic environment of business, Introduction to managerial economics; Role of a Manager: Tasks and responsibilities of a professional manager, Human Resource development systems Organization structure & design, manpower planning Processes Managerial skills and Management Systems, techniques and processes, SWOT Analysis.

Business Policy and Strategic Management; Assessment of capital requirement and sources of capital planning the establishment and development of business, fixed and current assets, liquid resources, Forecasting of business, cash flow, effect of taxation, Public and private sources of finance, methods of obtaining finance from external sources and internal sources, cost of capital, forms of capital structures.

Value engineering and quality assurance, marketing planning & organization, marketing research & Marketing strategies, determinants of consumer behaviour, Models of consumer behaviour, Pricing & promotion strategies, Business forecasting. Modern Control Systems, Total quality Management (TQM), JIT, DSS, ERP, Strategic Management, Technological innovation & creativity.

Construction Finance: Accounting information and application, Financial versus economic evaluation, financial statements and project appraisal. Project yield, taxation and inflation, risk and uncertainty, Turnkey activities; finance and working capital, depreciation and amortization; cost control, performance budgeting, equipment rentals. Bidding and awards, work pricing, cost elements of contracts, letters of credit, financing plans, multiple sources of finance. Qualifying, bidding, bidders, comparing the bids, under-writing, unforeseen revisions, costs and rates escalation, cost progress reporting. Legal aspects.

REFERENCES:
Course Outcomes:
1. Students shall be able to Plan Bar Chart, CPM chart, PERT chart material requirement schedule, Manpower schedule, Machinery Schedule
2. Student shall be able to carry out manpower resources leveling and smoothing.
4. Student shall be prepare Project management reporting documents.
5. Student shall be able to frame a labour law for their project site.

Syllabus:
Understanding Project Management, Project manager, Organization structures, Stages of Construction, organizing and staffing the project office and team

Construction Planning, Project planning, milestone schedules, WBS, Network techniques, CPM, PERT and Prima Vera, Line of Balancing Techniques, Critical Chain Method, Resources leveling and smoothing.

Project Management Information system, MIS reporting, Daily, Weekly and monthly reporting, Actual vs. Planned reporting, Planning & Cost control document, Quality and safety documents at site.

Material management- purchases management and inventory control, ABC analysis.

Construction Labour, Payment of wages Act, Workmen’s Compensation Act, Minimum Wages Act.

REFERENCE:
Course Outcomes:
The construction materials engineering undergraduate curriculum provides a broad understanding of the composition, microstructure, and engineering behavior of various materials used in civil engineering applications.

Syllabus:

Materials for making Mortar and concrete: Lime manufacture, properties, hardening of lime, types of lime, lime concrete uses, cement, aggregates, water, characteristics, properties and uses of Pozzolana materials, Types of mortars, special mortars, properties and applications, admixtures

Ceramic Materials: Classification, Refractories, glass, glass wool, mechanical, thermal and electrical properties, fire resistance materials, Uses and application.

REFERENCE:
Course Outcomes:
To make Civil Engineering students able to analyze, evaluate and design construction contract documents.

Syllabus:

Construction claims: Extra item, excess quantity, deficit quantity, price escalation.

Dispute resolution mechanism: litigation, arbitration, conciliation, mediation, dispute resolution board. Contractual Problems: Possible contractual problems, creation of claims, development of disputes.

Contract document: Drafting of clauses, development, and interpretation, CPWD conditions of contract, FIDIC conditions of contract.

BOT contract: Types of contract, PPP framework, types of risk, concession agreement, drafting of clauses, development, and interpretation.

Relational Contract: Partnering, alliancing, key elements, processes.

REFERENCE:
Course Outcomes:
1. Student should able to decide which types and capacity of construction equipment can be used for excavating, compacting grading, and dozing, concreting operation.
2. Student should able to prepare mass diagram for excavation particularly useful for road project.
3. Student should able to prepare cost analysis for Excavating and concreting equipment.

Syllabus:
Excavating Equipments: Different types of Excavator such as Front shovel, hoes. Their selection, calculation of shovel production, height & cut of shovel, angle of swing effect on shovel production., calculation of hoe production, Type of loaders their bucket attachments, loader production rates, calculation of wheel loader production

Study of equipments with reference to available types and their types and their capacities, factors affecting their performance

Earthmoving Equipment: Tractors and attachments, dozers and rippers, scrapers, shovels, draglines, trenching machines, clamshell, hoes, trucks and wagons, dumpers, rollers and compactors

Pile driving equipments: Types, pile driving hammers, single acting and double acting, differential acting hammers, hydraulic and diesel hammers, vibratory drivers

Pumping equipments: Reciprocating, diaphragm & centrifugal pumps, well point system. Concrete manufacture, transport, placing and compacting equipment, mixers, central batching and mixing plants, pavers, transit mixers, concrete pumps shotcrete Air Compressor Equipments for moving materials, builder’s hoists, forklifts, cranes, belt-conveyors, cableways, ropeways.

REFERENCE:
2. Construction Equipment and its Planning and Applications, Mahesh Varma, Metropolitan Book Co. (P) Ltd., New Delhi, India.
3. Construction Machinery and Equipment in India, (A compilation of articles Published in Civil Engineering and Construction Review), Publish by Civil Engineering and Construction Review New Delhi, 1991
Course Outcomes:
Student shall be able to
1. To Prepare Capital budgeting of a Construction site.
2. To Prepare a Performance statement of a company’
3. To estimate various financial instrumental such as IRR, Break even analysis
4. To prepare a Job Cost report of a Construction Site.

Syllabus:
Project Appraisal: Project appraisal, government and private project evaluators, significance of social benefit – cost analysis, commercial profitability, national economic profitability, measurement of direct and indirect benefit and costs. Calculation of benefit cost ratio.

Engineering economics: Time value of money, discounted cash flow, decision making among the alternatives, replacement analysis, break even analysis.

Project capital: Cash flow of a project, estimation of minimum capital required, internal rate of return (IRR), Multiple IRR, estimation of annualized cost.

Depreciation: Importance, classification, types – straight line, sum of year method, double rate declining balance method.

Cost Control: Understanding control, operating cycles, cost account codes, Job cost report, Projected Cost Estimates, status reporting, variance and earned value.

Performance statement: Capital gearing ratio, shares, debentures, PBT, PAT, PBIT, Earning per share, preparation of company’s performance statement, Inflation.

REFERENCE:
2. Donald Newnan, Engineering Economics analysis, Oxford University Press
Course Outcomes:
Student shall be able to
1. Prepare Capital Budgeting of a Construction project in excel sheet.
2. Use time value of money formulae such as IRR, CRF, PV, FV in the excel sheet.
3. Prepare a Construction programme for Town ship, Road Project, Bridge project etc with using Prima Vera Software.
4. Spreadsheet applications for calculation of Present worth, future worth, IRR, CRF etc.
5. Project management software such as Primavera software, Microsoft project- Preparation of project and feed data into the software for various projects. Study of Statistical Software such SPSS.

REFERENCE:
1. Project Management using Primavera, Eastwood Harris Publications.
2. M.S. Project Microsoft Press.
Course Outcomes:
The course seeks to recognize the mechanisms of degradation of concrete structures, provide the students with the knowledge of available techniques and their application for strengthening or upgrading existing structural systems. It also provides how to conduct field monitoring and non-destructive evaluation of concrete structures.

Syllabus:
Performance of construction materials and components in services; Causes of deterioration; preventive measurements and maintenance; Principles of assessment of weathering and durability; Characteristics of materials; Diagnosis of construction failures; Dealing with cracks; Methods of repair in concrete, Steel and timber structural components; Corrosion damage of reinforced concrete and its repair and prevention measures; Surface deterioration, Efflorescence, causes, prevention and protection; Surface coatings and painting; Water proofing; Grouting; Strengthening of existing structures; Special repairs, maintenance Inspection and planning, Budgeting and management.

REFERENCE:
2. Earthquake resistant design of structures by Pankaj Agarwal and Manish Shrikhande, Prentice-Hall of India, 2006
3. Handbook on Repair and Rehabilitation of RCC buildings, Published by CPWD, Delhi, 2002.
Course Outcomes:
On completion of this course, the students would:
 1. Have acquired an understanding of the concept and theoretical background of low energy building design.
 2. Be able to demonstrate their learning about use of simulation tools to achieve energy efficiency.

Syllabus:
Conservation & energy efficiency concepts-overview of significance of energy use and energy processes in buildings.

Solar energy fundamentals & practices in building design- solar astronomical relations and radiation physics and measurements, design decision for optimal orientation of building, shadow analysis.

Heating and ventilation design- Human thermal comfort, climatological factors, material specifications and heat transfer principles, Thermal performance evaluation, Heat loss from buildings, design of artificial ventilation system, design of insulators.

Design audits & economic optimization- Concept of cost/benefit of energy conservation & carbon footprint estimation.

Energy efficient lighting system design: Basic terminologies and standards, daylighting and artificial lighting design, auditing.

Advances in computational energy conservation- implementation of computer energy simulation programs into building designs.

REFERENCE:
Course Outcomes:
The learning outcomes of the course are:
1. Give knowledge of factors to be considered in the design of prestressed concrete structures
2. Understand the difference between pre- and post-tensioned systems for structural
3. behaviour
4. Learn to design and analyse prestressed concrete and concrete composite structures
5. Understand the roles of different limit states in the design of prestressed structures
6. Learn to consider the influence of time-dependency of materials on structural reliability.
7. Learn to consider specific features of precast concrete structures: connections, stability and prevention of progressive collapse, ductility
8. Give knowledge of the design and manufacturing of Finnish precast concrete products

Syllabus:
History of Precast Concrete, Materials, Typical framing, Standard components, Scope and concept of prefabrication and methods, Principles & Design considerations, Modular coordination of elements, Selection, casting and erection, Prefabrication system for buildings, Walls floors, Precast shells, prefabrication and housing, limit state of stability and collapse, prefabrication of bridges

REFERENCE:
Course Outcomes:
1. Learn decision and risk analysis (D&RA) concepts & terminology that are most used in industry
2. Understand the impact of uncertainty in decision-making
3. Learn specific tools & processes for analyzing & making decisions - useful both professionally and personally
4. Learn to evaluate and interpret the output of D&RA tools and processes - to make the best decision
5. Develop a critical-thinking, problem-solving, value-creating approach to decision-making
6. Understand how people often actually make decisions as opposed to how they should

Syllabus:
Need of Decisions and Risk analysis for construction management, Decision Models, Risk and Uncertainty, Theory and Techniques of Decision and Risk Analysis, Qualitative and Quantitative risk analysis tools /methods, Modelling Value Systems, Value Management for Construction, Competitive Bidding and Risk Sharing, Strategic and integral planning, Decisions making for site selection, construction, execution and operation of projects, Documentation, Project proposals, Economic Analysis, Legal Aspects of project management, Environmental appraisal, ISO 14000, Hazards identification, analysis and risk assessment, Accident and incident Analysis and control systems, IS 3786, S.H.E. Management IS15001, Training &Education Management Oversight and risk tree, Risk control and Treatment, Risk management and Internal control, Risk mitigation, Risk management plan, IT and IS for Risk management

REFERENCE:
Course Outcomes:
1. Create new engineering materials to improve the performance of infrastructure
2. Characterize and mitigate natural and man-made hazards
3. Improve fundamental knowledge of the inter-relationships between the built environment and natural systems.
4. Develop the technological innovations needed to safeguard, improve, and economize infrastructure and society.

Syllabus:
Fundamentals of Sustainable Construction Engineering- Sustainability and resources, need, present practices at national and international level, The Sustainability Quadrant- challenges & Issues, Government initiatives.
Sustainability assessment using standard approaches- LEED/GRIHA rating evaluation process.
Socio-economic feasibility of sustainable construction products- Innovative & customized sustainable product design based on social constraints, tools & aids available for sustainable construction products.
Life Cycle Assessment and Costing-Various aspects related to construction cost, present value analysis, life cycle stages, cost calculation & measures, evaluation criteria, uncertainty assessment, sensitivity analysis, break even analysis.

REFERENCE:
Course Outcomes:
Students will be familiar with the technology of major construction as outlined in the listed topic headings. Students will be able to describe, analyze, compare and evaluate the technology of high-rise construction and be aware of some of the problems that can be associated with poor management of construction projects.

Syllabus:
Concrete Construction methods: form work design and scaffolding, slip form and other moving forms, pumping of concrete and grouting, mass concreting (roller compacted concrete), ready mixed concrete, various methods of placing and handling concrete, Accelerated curing, Hot and cold weather concreting, Under water concreting, Prestressing.

Steel and composites construction methods: Fabrication and erection of structures including heavy structures, Prefab construction, industrialized construction, Modular coordination.

Erection Techniques : Major types of mobile crane, Lifting capacities of cranes, modification in cranes for heavy lifting, crane booms, Rated loads for lattice and telescopic boom cranes, Working ranges of cranes, Tower cranes: - classification, operation, tower crane selection,

Tunneling: Tunneling equipment, Tunnel boring machine, Pipe Jacking, selection of tunnel alignment, tunneling using Road Headers, Cut and fill techniques, jack down techniques, box type tunneling techniques.

Special construction methods: Construction in Marine environments, High rise construction, Bridge construction including segmental construction, incremental construction and push launching techniques, River valley projects.

REFERENCE:
1. Purifoy, Schexnayder, Construction Planning, Equipment and Methods, Tata Mc Graw Hill
Course Outcomes:
1. Apply logical, critical and creative thinking to analyse, synthesise and apply theoretical knowledge, and technical skills, to formulate evidenced based solutions to industry problems or issues
2. Collaborate effectively with others and demonstrate intellectual independence and autonomy to solve problems and/or address industry issues and imperatives.

Syllabus:
Classification of buildings, Importance of building services, Role of Construction Manager, Planning and designing of building services, Water supply and Distribution to Multi-storey buildings, De-centralized water Treatment units and Swimming pool for building complexes, storm water drainage and Rain Water Harvesting, sanitation services - Soil Pipe system, de-centralized waste water Treatment, Solid Waste Disposal System.

REFERENCE:
2. F. Hall (Author), Roger Greeno (Author), Building Services Handbook: Incorporating Current Building and Construction Regulations.
7. V.K. Jain, Handbook of Designing and Installation of Services in High Rise Building & Complexes, Khanna Publicaiton, New Delhi
Course Outcomes:
1. Gather background information and research and describe its impact on the project.
2. Apply the basic principles of project appraisal and evaluation, and determining feasibility of projects to procedures using methods such as Cost-Benefit Analysis.
3. Describe and explain the principles of financial planning and cost planning of a civil infrastructure project.
4. Describe and explain the basic features of risk and quality management of a project, and the extent that these management areas need to be implemented.
5. Understand the concepts of financial, economic, social and environmental impact and describe and explain how these are undertaken in an infrastructure project.
6. Describe and explain the main features of project evaluation.

Syllabus:
Definitions of infrastructures; Typical infrastructure planning steps; Planning and appraisal of major infrastructure projects; Screening of project ideas; Life cycle analysis; Multi criteria analysis for comparison of infrastructure alternatives; Procurement strategies; scheduling and management of planning activities.

Economic analysis – concept and applications, principles of methodologies for economic analysis of public works, social welfare function, Demand curves and price elasticises; Shadow pricing; Accounting for risk and uncertainty.

Financial evaluation; Financial estimates and projections; Project risk analysis; Political and social perspectives of infrastructure planning; Case studies.

REFERENCE:
Course Outcomes:
1. To make the students capable of solving real problems related to Geotechnical engineering, once he/she join industries as a fresh geotechnical engineer.
2. In this course all the topics will be taught from the application point of view with examples from case histories and a student will get a chance to apply his theoretical knowledge to solve real geotechnical challenges.
3. Introduction with advance methodology, techniques and tools related to geotechnical investigation
4. To discuss ground improvement with various methodologies.

Syllabus:
Site Investigations: Planning of investigation programs, Information required for planning different stages of investigations. Geophysical methods, Methods of site investigations: Direct methods, semi-direct methods and indirect methods, Drilling methods. Boring in soils and rocks, methods of stabilizing the bore holes, measurement of water table, field record. Field tests: In-situ shear test, in-situ permeability test, SPT, DCPT, SCPT, in-situ vane shear test, pressure meter test, plate load test.

Sampling techniques, Sampling disturbances, storage, labeling and transportation of samples, sampler design, influence on properties.

Geotechnical specification and proposal and report writing, boring log preparation, Safety measures, and Geotechnical risks

Geotechnical Processes: Field compaction, field compaction techniques- static, vibratory, impact, Earth moving machinery, Compaction control in field.

In-situ stabilization with additives: Lime, fly ash, cement and other chemicals and bitumen.

Geotechnical Engineering Case Histories: Earthen dam and reservoir, Industrial Structures, Ground Liquefaction, opencast coal mining, landslides, failure of geotechnical structures under critical natural hazards, debris flow, forensic geotechnical investigation.

REFERENCES:
1. Raj Purushothama, Ground Improvement Techniques, Laxmi Publications
2. S. K. Saxena, S. A. Gill and R. G. Lukas, Subsurface Exploration and Soil Sampling, American Society of Civil Engineers
MAL409 APPLICATION OF OPERATION RESEARCH TECHNIQUES IN CONSTRUCTION

[(3-0-0); Credits: 3]

Course Outcomes:
1. Identify and develop operational research models from the verbal description of the real system.
2. Understand the mathematical tools that are needed to solve optimization problems.
3. Use mathematical software to solve the proposed models.

Syllabus:
Introduction, concepts in probability and statistics, linear programming, transportation and assignment problems. Dynamic programming waiting line models, Inventory Management, sequencing, Decision theory, Game theory, simulation as applied to construction. Modifications and improvements on CPM/PERT techniques.

REFERENCES:
Course Outcomes:

1. Understand the environmental, social and economic framework in which environmental management decisions are made understand the life cycle perspective, systems approach and environmental technologies for converting process, products and service related industrial environmental problems into opportunities to improve performance
2. Anticipate, recognize, evaluate, and control environmental issues in a variety of sectors and industries and liaison with federal, state, and local agencies and officials on issues pertaining to environmental protection
3. Recognize, evaluate, and control factors in the workplace and the environment that cause health and environmental hazards and utilize quantitative knowledge and skills and modern tools and technologies to assess, analyze, plan, and implement environmental management systems
4. Obtain, update, and maintain plans, permits, and standard operating procedures.
5. Prepare, review, and update environmental monitoring and assessment Reports and Monitor progress of environmental improvement programs

Syllabus:
Environmental problems and issues at global and national level, sustainable development (SD), Indicators of sustainable development, regional carrying capacity based planning, National Environmental Policy (NEP), Climate change, its impacts, adaptation and mitigation.

Waste minimization and pollution prevention strategies – Tools of corporate environmental management; ISO 14000, TC 207 structure, Environmental Management System (ISO: 14001), General requirements; Cleaner technology (CT) of production, waste management hierarchy implementation of CT, barriers for adoption of CT

Life cycle assessment, methodological framework. Environmental impact assessment, Methodologies for EIA, Environmental management plan (EMP), environmental monitoring plan, EIS, case studies of infrastructure and industrial projects

Indian environmental legislations and major environmental acts such as Water Act (1974), Air Act (1981), Environmental (Protection) Act (1986); International Environmental Treaties; Kyoto protocol, Montreal protocol, COP21, CDM. Ecomark, objectives, criteria, general and specific requirements. Design for Environment (DFE), strategy, implementation. Environmental audit, methodology, Benefits of EA to Industry. Overview of technologies, regulatory standards for industrial wastewaters and atmospheric emission.

REFERENCES
3. Ministry of Environment, Forests and Climate Change(MoEFCC), Govt. of India web site
Course Outcomes:
The objective of this course to provide basic understandings of climate change, the causes of climate change and its effect on environment. This course is expected to provide the basic knowledge of important climate variables and the predictions of the changes in the climate system, policy issues and mitigation strategies.

Course Syllabus:
The Basics of Climate Change Science: The Earth’s Energy Balance, negative entropy and mitigation, Greenhouse Gases, Aerosols and atmospheric brown cloud, Impact of CO₂ increase on climate change, Other Drivers of Climate Change, Adaptation strategy, Recent Climate Change impact at local and global scale, Sustainable Energy for All

Paleoclimatology: Glaciar Ice and Ice Core Dating, Other measurement techniques, Heinrich events, Dansgaard-Oeschger (D-O) events and their relevance in climate studies

Ecological Impacts of Climate change: Anthropogenic activities and climate change, Rising of sea level and consequences, Impact on biodiversity and extinction of endemic species, Changing of food chain, Agricultural shifts, Impact of climate change on health

Policy and Legislative issues in Climate Change: The UNFCCC, The Montreal Protocol, From Kyoto to Copenhagen, Towards COP21, ICMR, ICAR & IARI

Goal to Set Climate Change Prevention: Limiting the Mean Surface Temperature Increase below 2-Degrees Celsius vs. Pre-Industrial Levels, Global Emissions Reduction Pathway for the 2-Degree Limit, Potential Emissions from Fossil Fuel Reserves & Resources

Mitigation Strategy: Grid Management of Power Systems with High Penetration of Renewable Energies, Carbon Capture & Sequestration, Electric Vehicles and Advanced Biofuels, the Role of Technology Roadmaps and Roundtables, Introduction to Climate Modeling (GCM and RCM Models)

REFERENCE:
1. Climate Change and India – Vulnerability Assessment and Adaptation; Edited by P. R. Shukla, Subodh K. Sharma, N. H. Ravindranath, AmitGarg, Sumana Bhattacharya , Universities Press , 2003
2. Climate Change and India – Vulnerability Assessment and Adaptation; Edited by P. R. Shukla, Subodh K. Sharma, N. H. Ravindranath, AmitGarg, Sumana Bhattacharya , Universities Press , 2003
3. Climate Change and Chemicals Environmental and Biological, aspects; Golam Kibria, A. K. Yousef Haroon, Dayunthi Nugegoda and Gavin Rose, Published by New India Publishing Agency, 2010
5. Climate Change- Causes Effects and Solutions; John T. Hardy, Wiley