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Annexure-1 : Generation of time histories and Power spectral density 
function (PSDF) compatible with Design Response Spectrum (DRS) 

A. 1. 0 Generation of Power spectral density function (PSDF) compatible with Design Response 
Spectrum (DRS) 

 Spectrum compatible time history is generated from Power spectral density function (PSDF) 
which is compatible with design response spectrum. PSDF can be generated directly from response 
spectrum using two methods. The first method is termed as method-SIMQK which is used in the 
SIMQK program for artificial motion generation. The details of this method to obtain PSDF ( )0

from smooth target velocity response spectrum (Rv) are given below: 
PSDF ( )0 is given by,  
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Where F0is the factor of multiplication with standard deviation to obtain the peak response of SDOF 
and it is given as 
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y and y are the response spectral moments and given by: 

y (T) =  and y (T) = y at very low periods (response spectral moments are equal to those of the 

ground motion) 

y (T) =ω0 and 
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The second method is termed as method-UNRUH_KANA  which is described below: 

Power Spectral Density Function (PSDF) ψ() of Single degree of Freedom System subjected to 

excitation PSDF ϕ() is given as 
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and ( )0,H  is the complex conjugate transfer function. 
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RMS value or standard deviation of the response of SDOF having frequency 0 is given as 
 

 
Response of SDOF in terms of standard deviation is given as 
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Where F0    is the factor of multiplication with standard deviation to obtain the peak response of 
SDOF and it is given as 
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Where T is the earthquake time duration and  
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p is the probability of exceedance. Typical value is 0.15 
To have compatible mapping between and earthquake response acceleration and PSDF,  an 
approximate solution is given as 
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is used as an initial estimate in an iterative procedure for which flow chart is given as follows. 
 
 

 
Fig. A. 1 Flow chart for the generation of PSDF 
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A. 1. 1 Procedure for generation of spectrum compatible time histories 

 
Periodic function can be expanded into a series of sinusoidal waves 
 
 
 
 

An is the amplitude and nis the phase angle of the nth contributing sinusoid. Random number 

generator is used to produce strings of phase angles in the range between 0 and 2. The amplitudes 

An are related to the (one sided) spectral density function Ø() as: 
 
 
 
 

 
 

To simulate the transient character of real earthquakes, the steady state motions are multiplied by 
deterministic envelop function I(t). The artificial motion becomes: 

 
 

 
 
 
To smoothen the calculated spectrum and to improve the matching an iterative procedure is generally 
used. To do this the PSD is modified as follows: 
 
 
 
 
 
 
 
where Sv is the target spectral value. 
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Annexure-2: Method of analysis 

 

A.2.1  The Number of Modes Considered in the Modal Superposition Method  

 Number of modes included in the analysis shall be sufficient to ensure that inclusion of all 
remaining modes does not result in more than 10% increase in total responses of interest. 
Alternatively, ASCE standard (4-98)  permits to include all the modes in the analysis having 
frequencies less than the ZPA frequency or cut-off frequency provided that the residual rigid 
response due to the missing mass is included. 
The following criteria to be adapted while choosing the minimum number of modes to be considered. 
1. Number of modes extracted are such that highest mode corresponding to a frequency 
greater than or equal to 33 Hz. 
2. The numbers of modes extracted are such that the cumulative modal mass is more than 90% 
in each of the three directions. 
Any one of the two methods can be used to determine the no of modes to be considered in modal 
superposition analysis. 
 

A.2.2 Combination of Modal Response  

i.SRSS method 
ii.10% method  

iii.Double Sum method 
iv.CQC method 
(i) With No Closely Spaced Modes (SRSS) 
In a response spectrum modal dynamic analysis if the modes are not closely spaced (two consecutive 
modes are defined as closely spaced if their frequency differ from each other by 10% or less of the 
lower frequency) the representative maximum value of  particular response of interest for design 
should be obtained by taking the square root of the sum of the squares (SRSS). Mathematically this 
can be expressed as follows. 
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Where R is the representative max value of particular response of a given element to a given 
component of an earthquake and Rk  is the peak value of the response of the element due to the k th 
mode and N is the number of significant modes considered in the modal response combination.  
(ii) With Closely Spaced Modes (10% methods) 
In a response spectrum modal dynamic analysis if the modes are closely spaced (two consecutive 
modes are defined as closely spaced) if their frequency differ from each other by 10% or less of the 
lower frequency) the representative maximum value of  particular response of interest should be 
obtained by taking the square root of the sum of the squares (SRSS). Mathematically this can be 
expressed as follows. 
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Where R is the representative max value of particular response of a given element to a given 
component of an earthquake and Rk is the peak value of the response of the element due to the kth 
mode and N is the number of significant modes considered in the modal response combination.  
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(iii) Double sum method 
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where    kk  ,    are the modal frequency and the damping ratio in the kth  mode respectively, and td is 

the duration of the earthquake. 
The above equation for εks =1 for k=s. Consider two modes with equal frequencies and damping 
values then eks =1 and equation gives 
R2= R1 2 +R22 + 2R 1 R2 
R= R1+ R2 
The double sum rule correctly gives the combined response as the algebraic sum of the two modal 
response values. On the other hand, if the two modes had sufficiently separated frequencies εks = 0 
and we would get 
R = (R1 2 +R2 2 )1/2 

(iv) Complete Quadratic Method 
This method does not take in to account the duration of the earthquake. 
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A.2.3  Missing Mass Correction 

In response spectrum analysis method we do the analysis for finite number of modes with cut-off 
frequency as 33Hz. In effect, the truncation of the mode series means that some mass of the system is 
ignored and is called as missing mass. Forces associated with these inertial masses are significant for 
system where mass participation at cut-off frequency is not enough. This missing mass is evaluated 
and forces are calculated by static method based on the following equations. 
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Force due to missing mass        max
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where, 
maxAS = highest spectral acceleration at the cut-off frequency  

M  =  Total mass  
 

A.2.4  Combination of Response due to Missing Mass with Dynamic Response 

Residual response due to missing mass is combined with response due to dynamic analysis. The 
above response will be considered as an additional mode having frequency equal to the ZPA or cut-
off frequency and will be combined using the SRSS rule. 
 

A.2.5 Time history analysis 

Let us consider the general case of a vibration problem 

          F(t)  xK  xC  xM =++        

where, M is mass matrix (lumped/consistent), C is damping co-efficient matrix and K is stiffness 
matrix as also explained above.   

Considering as a multi degree freedom system the equation of motion for the base excitation 
is written as 

 

           1)()()()( txMtxKtxCtxM g
 −=++      (A.4.1) 

The above equation can be directly solved for responses using direct step by step integration 
techniques. For modal superposition technique, the following steps should be followed: 

    )()( tXtxLet =           

 Where  is the mode shape )(tXand  is the generalized displacement            

Substituting the above equation in previous equation,  
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 −=++        

Multiplying the above equation with  T on both sides we get  
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TTTT   −=++      

Using orthogonal properties of mode shapes, above equation can be written as 

      )()()(2)(1 2 txtXtXtX gnnnnn n
 −=++    

It can be seen that the above equations are un-coupled and solved separately for each modal 
properties of frequency and damping. For total response algebraic summation is performed. For 
design maximum values are considered.  
 
To solve the equation of motion (equation (A.4.1)), step by step procedure can be adopted, in which 
the loading and the response history are divided into sequence time intervals or steps. The response 
during each step is then calculated from the initial conditions existing at the beginning of each time 
step and from the loading history during the step.  These can be explicit or implicit. 

Explicit methods are those in which new response quantities calculated in each step depend 
on quantities obtained in previous steps and analysis proceeds directly from one step to other. 

In Implicit methods the expressions giving the new values for a given step include one or 
more values pertaining to that same step, so that trial values of necessary quantities must be assumed 
and then refined by iterations. 
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A.2.6 Time integration methods 

This type of approach makes use of integration to step forward from the initial to the final 
conditions for each time step.  The following equations represent the essential concept 
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In order to carry out this type of analysis, it is necessary first to assume how the acceleration 
varies during the time step. 

Some of the time integration techniques are Newmark beta technique and Wilson theta 
technique. 
 

A.2.7 Response spectrum analysis 

  

 The un-coupled equations of a multi degrees of freedom system under base excitation are: 

      gnnnnn xXXX
n

 −=++ 221    

In the above equation, the matrices are diagonal and hence represents ‘n’ uncoupled equations 
of motion and each represents a single degree of freedom system with a factor on right hand side 
called participation factor. It means that if we know the response of single degree of freedom system 
and by multiplying it with participation factor, we can get the modal response of multi degree of 
freedom system as 

    nnnn Xx  =        

where, nX  are the spectral values as Sa1, Sa2etc corresponding to frequencies f1, f2 etc. 

Hence, it can be concluded that once the frequencies are evaluated for multi degree of freedom 
system, the response accelerations can be obtained at that frequency. Once the generalized co-
ordinates (product of spectral accelerations and participation factors) are obtained, then the responses 
at various nodes can be obtained multiplying it by mode shape. 
 

A.2.8 Simplified methods 

Two simplified methods can be used. The first one is the equivalent static method, when floor 
response spectrum is available and the second simplified method can be used in the absence of floor 
response spectrum as explained in. It is recommended to use these simplified methods for category-
3 and category-4 equipment only.  
 

A.2.8.1 Simplified method-1 (equivalent static method) 

The equivalent static method is a simplified method as compared to any other dynamic analysis 
methods. 
The equivalent static method may be applied to single point of attachment cantilever models with 
essentially uniform mass distribution.  
The equivalent static load shall be determined by multiplying the structure, equipment or component 
masses by acceleration equal to 1.5 times the peak acceleration of the applicable response spectrum. 
Smaller value may be used if justified, or the floor ZPA value may be used if it is shown that 
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fundamental frequency is so high, typically 33 Hz. No dynamic amplification will occur at this 
frequency. 
To obtain an equivalent static load for a structure, equipment, or component, which can be 
represented by a simple model, a factor of 1.5 is to be applied to the peak acceleration of the applicable 
floor response spectrum. A factor less than 1.5 can be used if adequate justification is provided. 
The significance of utilizing factor 1.5 attributed to account for higher modes and add conservatism 
in the equivalent static method. 
Fh =K Samax W      
Fv =K Samax W      
Where: 
Fh  = Equivalent static inertia force applied to the component in the horizontal direction 
Fv = Equivalent static inertia force applied to the component in the vertical direction 
K=  load coefficient applied to the model. The value of K is taken as 1.5. 
Samax = peak acceleration of applicable amplified or floor response spectra in the ith direction (in g’s) 
W = the total dead load (weight) which exist during the postulated seismic event. This includes piping 
weight, water weight and insulation. The units of the term W must be consistent with the terms Fh 
and Fv above.  
 

2.8.2 Simplified method-2 

The second simplified method can be used in the absence of Floor Response Spectrum (FRS) for the 
design of equipment; the following equation can be used to include the effect of floor response: 
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where: 
Ah is the design horizontal seismic coefficient (IS-1893: Part-1), which is given by 

 

 

g

Sa is design acceleration coefficient for different soil types, normalized with peak ground 

acceleration corresponding to natural period ‘T’ of the structure (in the absence of information on ‘T’, 

5.2=
g

Sa ) 

h is the height of the equipment location and H is the total height of the building 
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is a simplification to account for floor amplification. 
W = the total dead load (weight) which exist during the postulated seismic event. 
 
Example-1: A vessel of mass 5 Ton is mounted on the roof of a structure in seismic zone-II, as shown 
in Figure 4.1. Calculate the anchorage force if the vessel is a) supported on roof b) supported at a 

height half of the total structure height. Consider, 5.2=
g

Sa , R=1 and I=1.  
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Figure 2.1 Schematic of a vessel mounted on the roof  

For seismic zone-II, Z=0.1g; 
Case-a: supported on roof 
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Case b: supported on ground 
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A.4.9 Procedure for calculating the hydrodynamic loads 

The procedure for calculating the hydrodynamic load is given in IS-1893: Part-2 for Liquid 
Retaining Tanks.  

  

a)Horizontal 
b) Vertical 
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Annexure- 3 Multi supported piping systems 

The piping system shown in Fig.A.3.11 has supports at three locations such as one with top equipment 

and second at bottom equipment and laterally constrained at floor level.  For seismic  design of   this piping 

system the basic inputs required are floor response spectra (FRS) at support locations and support displacements. 

If the supports are effective in three directions, then at each support three FRS are need to be considered and 

similarly three support displacements.   Support displacements are also called Seismic Anchor Motions (SAM)  

need to be considered in design and  corresponding stresses can be obtained by performing static analysis.  

 

 

                                                      

 

 

 

 

 

 

The piping system may be decoupled from the equipment if the following criteria are satisfied. 

a. Moment of inertia of equipment is more than 100 times the moment of inertia of the piping system  

b. Equipment side ends of piping system have constraints along three directions. This requirement may 

be at one location or different locations.  

 

After finalising the boundaries as shown in Fig.A.3.1 (b), suitable mathematical may be developed as 

shown in Fig.3.1(c) and analysed for the forces, moment and stresses.  For selecting number of elements and 

type of elements such as straight pipe, bend , tee etc  refer  to the documents  related to multi degree of freedom 

and piping design  mentioned in the foreword. After finalising the model, following equilibrium equation is 

solved considering the piping  subjected to multi support excitation. 

                                                                                                                                                                   

                                                                                                                        A.3.1                                                                                   

 

It is important to note that in Eq.A7.1  the influence vector {Ij)     has static displacements with unit displacement 

at the support j. It results in number of influence vectors equal to translational supports. Where as  for uniform 

excitation the influence vector   has   1s and 0s. Kindly note that the sum of all the influences at given node will 

c. Mathematical 

model of piping system 

b. Uncoupled 

piping system 

a. Typical 

piping system 

Fig.A.3.1 Typical piping system connected to 

equipment 

            jg IxMxKxCxM  =++
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results in unity.  The above equation cam be solved  either for the time wise response or   frequency (mode) 

wise response based on the input in terms of time history and response spectrum respectively. Usually later 

procedure is adopted since it is simple and   Broadened    FRS can be used without variations accounting for 

soil-structure-interaction, numerical solution variations and structure-equipment interactions.   The  modal 

response can be combined using suitable methods such as Square Root of Sum of Square, Absolute sum, 

10%sum or Complete Quadratic Combination(CQC). 
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Annexure -4 Compatibility of Time Histories 
 

One or more recorded, modified recorded or synthetic earthquake ground motions may be used for seismic 
response evaluation of structures using time history methods. 
The time histories shall be selected to reasonably represent the Design Basis Spectra. 
The time histories have to satisfy the requirements as follows. 

i. The mean of the Zero period acceleration (ZPA) values calculated from the individual time histories 
shall equal or exceed the design basis ground displacement, velocity and acceleration 

ii. In the frequency range of interest for design of structures, equipment and piping systems, the 
average ratios of spectrum to the design spectrum where the ratios are calculated frequency by 
frequency shall be equal to or greater than 1. 

iii. No one point of the mean spectrum shall be more than 10% below the design spectrum. 
iv. The average power spectral densities computed from the individual time histories shall be shown 

to possess adequate power at all frequencies in the frequency range of interest. 
v. Response spectral values from any time histories shall be calculated at sufficient frequency points 

to produce accurate response spectra. Frequencies of structure, equipment and piping may be 
included in the list. 

vi. When response from the three components of motion is calculated simultaneously on a time history 
basis, the input motion in the three directions shall be statistically independent. Two histories are 
considered statistically independent if the absolute value of the correlation coefficient does not 
exceed 0.3.  For two time histories it is calculated as follows. 
 

 
 
 
 
 
 
                 Where E= Mathematical expectation 
                 m1 and m2 are the mean values of x1 and x2 
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